Abstract

The structure of freshly prepared Al(OPh)3, its decomposition product, the hydrolyzed products and their structural evolution were investigated employing 27Al MAS NMR spectroscopy, PXRD, TGA/DTA/DSC/FTIR techniques. In the 27Al MAS NMR spectrum of the aluminium phenoxide, three signals with the chemical shift at 3.78, 21 and 45 ppm were observed. The chemical shift at 3.78 and 45 ppm revealed the presence of four and sixfold coordinated aluminum. The signal at 21 ppm corresponded to fivefold coordinated aluminium. When the aluminium phenoxide was directly decomposed in air at 600 °C, it resulted in amorphous product as evidenced from the PXRD pattern. The observed signals with chemical shifts at 10.1, 42, 73.6 ppm in the 27Al MAS NMR spectrum indicated the presence of 6, 5 and 4 coordination for the aluminium atoms suggesting disordered transitional γ-alumina to be the product. The hydrolysis studies of Al(OPh)3 with excess of water at 70 °C yielded bohemite (γ-AlOOH). The alumina obtained after dehydration at 600 °C was X-ray amorphous. The dehydrated product at 600 °C showed the presence of four and six coordinated aluminium atoms in the 27Al MAS NMR spectrum confirming it to be ordered γ-Al2O3. Crystalline γ-Al2O3 was obtained on further heating at 800 °C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.