Abstract

Nanostructured materials offer enhanced physicochemical properties because of the large interfacial area. Typically, geopolymers with specifically synthesized nanosized zeolites are a promising material for the sorption of pollutants. The structural characterization of these aluminosilicates, however, continues to be a challenge. To circumvent complications resulting from the amorphous character of the aluminosilicate matrix and from the low concentrations of nanosized crystallites, we have proposed a procedure based on factor analysis of (27)Al MAS NMR spectra. The capability of the proposed method was tested on geopolymers that exhibited various tendencies to crystallize (i) completely amorphous systems, (ii) X-ray amorphous systems with nanocrystalline phases, and (iii) highly crystalline systems. Although the recorded (27)Al MAS NMR spectra did not show visible differences between the amorphous systems (i) and the geopolymers with the nanocrystalline phase (ii), the applied factor analysis unambiguously distinguished these materials. The samples were separated into the well-defined clusters, and the systems with the evolving crystalline phase were identified even before any crystalline fraction was detected by X-ray powder diffraction. Reliability of the proposed procedure was verified by comparing it with (29)Si MAS NMR spectra. Factor analysis of (27)Al MAS NMR spectra thus has the ability to reveal spectroscopic features corresponding to the nanocrystalline phases. Because the measurement time of (27)Al MAS NMR spectra is significantly shorter than that of (29)Si MAS NMR data, the proposed procedure is particularly suitable for the analysis of large sets of specifically synthesized geopolymers in which the formation of the limited fractions of nanocrystalline phases is desired.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.