Abstract

Milk protein concentrates (MPC) are typically dried high-protein powders with functional and nutritional properties that can be tailored through modification of processing conditions, including temperature, pH, filtration, and drying. However, the effects of processing conditions on the structure-function properties of liquid MPC (fluid ultrafiltered milk), specifically, are understudied. In this report, the pH of liquid MPC [13% protein (70% protein DM basis), pH 6.7] was adjusted to 6.5 or 6.9, and samples at pH 6.5, 6.7, and 6.9 were subjected to heat treatment at either 85°C for 5 min or 125°C for 15 s. Sodium dodecyl sulfate PAGE was used to determine the distribution of caseins and denatured whey proteins in the soluble and micellar phases, and HPLC was used to quantify native whey proteins as a measure of denaturation, based on the processing conditions. Both heat treatments resulted in substantial whey protein denaturation at each pH, with β-lactoglobulin denatured more extensively than α-lactalbumin. Changes in liquid MPC physicochemical properties were monitored at d 1, 5, and 8 during storage at 4°C. Viscosity increased after heat treatment and also over time, regardless of pH and heating conditions, suggesting the role of whey protein denaturation and aggregation, and their interactions with casein micelles. The MPC samples processed at pH 6.9 had a significantly higher viscosity than those heated at pH 6.5 or 6.7, for both temperature and time conditions; and samples processed at 85°C for 5 min had higher viscosity than those heated at 125°C for 15 s. Particle size analysis indicated the presence of larger particles after 5 and 8 d of MPC storage after heating at pH 6.9. Acid-induced gelation of the liquid MPC led to significantly higher gel firmness after processing at 85°C for 5 min, compared with 125°C for 15 s. Also, gels made from MPC adjusted to pH 6.5 had higher storage moduli, with both time and temperature combinations, demonstrating the role of pH-dependent association of denatured whey proteins with casein micelles in gel network formation. These findings enable a better understanding of the processing factors contributing to structural and functional properties of liquid MPC and can be helpful in tailoring milk protein ingredient functionality for a variety of food products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call