Abstract
Biofertilizer plays a significant role in crop cultivation that had reduced its inorganic fertilizer use. The effects of inorganic fertilizer reduction combined with Pennisetum giganteum z.x.lin mixed nitrogen-fixing biofertilizer on the growth, quality, soil nutrients and diversity of the soil bacterial community in the rhizosphere soil of pakchoi were studied. The experiment composed of 6 treatments, including CK (no fertilization), DL (10% inorganic fertilizer reduction combined with Pennisetum giganteum z.x.lin mixed nitrogen-fixing biofertilizer), ZL (25% inorganic fertilizer reduction combined with Pennisetum giganteum z.x.lin mixed nitrogen-fixing biofertilizer), SL (50% inorganic fertilizer reduction combined with Pennisetum giganteum z.x.lin mixed nitrogen-fixing biofertilizer), FHF (100% inorganic fertilizer) and JZ (100% inorganic fertilizer combined with sterilized Pennisetum giganteum z.x.lin mixed nitrogen-fixing biofertilizer). Compared with conventional fertilization, the 25% reduction in chemical fertilizer applied with the Pennisetum giganteum mixed nitrogen-fixing biofertilizer resulted in higher plant height, plant weight, chlorophyll content, soluble protein content, soluble sugar content, vitamin C content, alkali hydrolyzed nitrogen content, available phosphorus content, available potassium content and organic matter content in pakchoi, and these variables increased by 11.81%, 8.54%, 7.37%, 16.88%, 17.05%, 23.70%, 24.24%, 36.56%, 21.09% and 19.72%, respectively. In addition, the 25% reduction in chemical fertilizer applied with the Pennisetum giganteum mixed nitrogen-fixing biofertilizer also had the lowest nitrate content, which was 53.86% lower than that with conventional fertilization. Different fertilizer treatments had a significant effect on the soil bacterial community structure. Compared with conventional fertilization, the coapplication of Pennisetum giganteum z.x.lin mixed nitrogen-fixing biofertilizer and inorganic fertilizer significantly increased the relative abundance of Proteobacteria and Actinobacteria in the soil. The results of the redundancy analysis (RDA) showed that soil organic matter, alkali-hydrolyzed nitrogen, available phosphorus, available potassium, pH and water content had a specific impact on the soil bacterial community. Among the factors, soil water content was the main factor affecting the soil bacterial community, followed by soil organic matter, soil pH, available potassium, soil available phosphorus and soil alkali-hydrolyzed nitrogen.
Highlights
Soil microorganisms are an important part of the soil ecosystem [1], participating in the decomposition of organic matter, nutrient element cycles and energy conversion [2,3,4]
The results show that the content of organic matter, alkali-hydrolyzed nitrogen, available phosphorus and available
We studied the effects of inorganic fertilizer reduction combined with Pennisetum giganteum z.x.lin nitrogen-fixing biofertilizer on Brassica chinensis L
Summary
Soil microorganisms are an important part of the soil ecosystem [1], participating in the decomposition of organic matter, nutrient element cycles and energy conversion [2,3,4]. These microorganisms play an important role in maintaining the productivity, function and stability of the ecosystem [5,6], which is a key indicator for measuring soil quality and productivity [7]. Biofertilizer can promote plant growth and development and improve the stress resistance of crops and the quality of agricultural products [16,17] and improve soil fertility, fertilizer utilization efficiency and soil microbial community structure [18,19,20,21]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.