Abstract
Pterocarya stenoptera is a native deciduous tree species and a candidate for reforestation in the riparian zones of the Three Gorges Reservoir Region of Yangtze River in China. Water treatments of continuous flooding (CF) and periodic flooding-drought (PF) were applied to examine the growth dynamics of 4-month-old P. stenoptera seedlings and its effects on soil chemical properties. Results showed that P. stenoptera seedlings in both CF and PF significantly decreased leaf biomass accumulation and the height and diameter growth as compared to that in control (CK; treatment with well-watered, well-drained soil), respectively. There was no significant difference in stem biomass among the three groups, but root biomass in PF showed severe reduction compared to that in both CK and CF. Total biomass in PF was significantly decreased compared to that in CK, but comparable to that in CF. Furthermore, no significant difference was found between CF and CK in total biomass. Water treatments in the unplanted soil pots significantly influenced soil pH, soil organic matter (OM), total nitrogen (TN), and alkali hydrolysable nitrogen (AN) contents, in contrast to no significant effects in total phosphorus (TP), total potassium (TK), available phosphorus (AP), and available potassium (AK) contents. In P. stenoptera soils, there were significant effects by water treatment, time, and treatment × time in the eight tested soil chemical properties, except treatment in TK and time effect in OM content. Compared to unplanted soils, the growth of P. stenoptera seedlings significantly increased soil pH value and OM, TN, TP, and TK contents, while decreasing AN, AP, and AK contents in CK group, augmented the mean value of each of the tested soil chemical properties with an exception of AK content in CF group, and increased soil pH value and TN, AN, TP, and AP contents with no significant differences in OM, TK, and AK contents in PF group. Given the fact that TN and TP contents significantly increased in P. stenoptera soils as compared to those in unplanted soils, growth of P. stenoptera seedlings should be a successful candidate for restoration within the highly dynamic hydrologic zone of the riparian zones of the Three Gorges Reservoir Region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.