Abstract

Infectious diseases due to antibiotic resistant pathogens are a global public health problem. This study aimed at determining the potential effect of bacterial-fungal interaction on the antibiotic susceptibility profile of Alcaligenes faecalis. Alcaligenes faecalis was isolated from water samples. The isolate was identified using the conventional biochemical tests and the 16S rRNA molecular sequencing technique. Additionally, Penicillium species was isolated and identified based on colony morphological characteristics and microscopic features. Standardized isolates were co-cultured in broth medium. Antibiotic susceptibility evaluation of the Alcaligenes faecalis from the co-culture and the original Alcaligenes faecalis was carried out using the Kirby bauer disk diffusion method. The antibiotic susceptibility profile of Alcaligenes faecalis before and after co-culture remained largely unchanged except in the case of chloramphenicol, where the isolate showed reduced susceptibility. Molecular analysis of resistance gene revealed the absence of tested gene encoding antibiotic resistance, including the streptomycin resistance (str) genes (stra and strb) and the erythromycin resistance methylase (erm) gene. The result of this study showed that there is a minimal influence of Penicillium cultures on the susceptibility of A. faecalis. Further research involving a wide spectrum of microorganisms and their interactions should be conducted to acquire a thorough understanding of the influence of microbial interactions on antibiotic susceptibility profiles in order to pave way for novel strategies to combat antimicrobial resistance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.