Abstract
The effect of a partition wall on heat transfer characteristics of a two-stream gas-to-gas counterflow microchannel heat exchanger has been numerically investigated. The flow passages of the microchannel heat exchanger are plane channels of 100 μm in height and 20 mm in length. The material of the partition wall is assumed to be stainless steel. The computations were performed for a wide range of flow rate to investigate heat transfer characteristics of the microchannel heat exchanger. Moreover, computations for various partition wall thicknesses were conducted to investigate the effect of the wall thickness. The thickness ranged from 200 μm to 6 μm while the channel height was fixed at 100 μm. Numerical results show that heat transfer characteristics of a gas-to-gas counterflow microchannel heat exchanger are affected by partition wall thickness. Computations for various partition wall thicknesses and thermal conductivities of the partition wall were performed. The results were compared with those of a single microchannel with constant wall temperature. Applicability of the assumption of constant wall temperature was revealed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.