Abstract
Thermal performances of gas-to-gas counter-flow and parallel-flow microchannel heat exchanger have been investigated. Working fluid used is air. Heat transfer rates of both heat exchangers are compared with those calculated by a conventional log-mean temperature difference method. The results show that the log-mean temperature difference method can be employed to a parallel-flow configuration whereas that cannot be employed to a counter-flow configuration. This study focuses on the partition wall which separates hot and cold passages of the microchannel heat exchanger. The partition wall is negligibly thin for a conventional-sized heat exchanger. In contrast, the partition wall is thick compared with channel dimensions for a microchannel heat exchanger. A model which includes the effect of the thick partition wall is proposed to predict thermal performances of the microchannel heat exchangers. The heat transfer rates obtained by the model agree well with those obtained by the experiments. Thermal performances of the counter-flow and parallel-flow microchannel heat exchangers are compared with respect to one another based on temperature of the partition wall. The comparison results show that thermal performances of the counter-flow and parallel-flow microchannel heat exchangers are identical. This is due to performance degradation induced by the thick partition wall of the counter-flow microchannel heat exchanger. This study reveals that the thick partition wall dominates thermal performance of a gas-to-gas microchannel heat exchanger.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.