Abstract

Experimental observations indicate that the repulsion of particles is a factor that induces the transformation of vesicles containing multiple particles. Metropolis Monte Carlo simulations are performed with two models in which repulsive particles are enclosed inside a vesicle. The distribution of the particles and the effective bending coefficient and surface tension of the membrane are analyzed. The shape and internal structure of the vesicle containing the particles are investigated as the vesicle volume is decreased. It is revealed that the repulsive interaction between particles produces a layered structure and stiffens the membrane. When particles repulsively interact over a long range, the membrane takes on a dumbbell form.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.