Abstract

This research focused on the effect of particle size and flotation time on magnesite flotation, and the flotation performance of various size fractions were predicted by a machine learning (ML) method. Four kinetic models were used to fit the recovery of MgO and SiO2 in various size fractions of magnesite flotation. The results demonstrated that the flotation of magnesite exhibits good agreement with the classical first-order kinetic model. Besides, the effect of various particle sizes on MgO recovery and selectivity index was predicted by ML method. It was shown that the proposed ML model could accurately reproduce the effects of particle size and flotation time on magnesite flotation performance. Furthermore, the developed model revealed that the optimal mean size range for magnesite flotation is 30 to 48 μm. Therefore, this paper is of great significance to the application of ML methods in the prediction of various magnesite size flotation performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.