Abstract

ABSTRACT As a key area of traffic safety research, crash severity modelling has attracted tremendous attention. Recently, there has been growing interest in applying machine learning (ML) methods in this area. However, the lessons and experience learned so far have not been systematically documented and summarised. This is the first article that surveys studies on ML applications in crash severity modelling and has the following major contributions: (1) it provides a comprehensive and critical review of current research efforts; (2) it summarises the successful experience and main challenges (e.g. data and methodology); and (3) it identifies promising research opportunities towards accurate and reliable crash severity modelling and results interpretation. The review results suggest that imbalanced data remains a major issue. Under- and over-samplings are often used to balance crash severity data despite their limitations. Some studies use local sensitivity analysis (LSA) to interpret ML modelling results but ignore the strict assumptions of LSA and omit the joint effects of risk factors. Moreover, very few studies consider the accuracy and reliability of ML model evaluation metrics. Other issues include spatiotemporal correlations, causality, model transferability and heterogeneity. This paper concludes by providing suggestions on model selection and modification to address the identified issues and recommendations for future research. For example, employing advanced ML methods such as graph convolutional networks (GCN) to model spatiotemporal correlations; exploring innovative ways of applying ML methods; and leveraging new developments in ML (e.g. interpretable ML) to derive causal relationships and interpret modelling results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.