Abstract

Particle size and oxygen content are two of the key factors that affect the ignition and combustion properties of aluminum particles. In this study, a laser ignition experimental system and flame test system were built to analyze the ignition and combustion characteristics and the flame morphology of aluminum particles. A thermobalance system was used to analyze the thermal oxidation characteristics. In addition, the microstructure of aluminum was analyzed by scanning electron microscopy. It was found that the oxidized products were some of the gas phase products agglomerated. Smaller particle size samples showed better combustion characteristics. The combustion intensity, self-sustaining combustion time and the burn-off rate showed a rising trend with the decrease in the particle size. Increasing the oxygen content in the atmosphere could improve the ignition and combustion characteristics of the samples. Four distinct stages were observed in the process of ignition and combustion. Small particle size samples had a larger flame height and luminance, and the self-sustaining combustion time was much longer. Three distinct stages were observed during the thermal oxidation process. The degree of oxidation for small-sized samples was significantly higher than that for the larger particle size samples. Moreover, it was observed that the higher the oxygen content, the higher the degree of oxidation was.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.