Abstract

The coupling of Eulerian and Lagrangian methods in the Eulerian–Lagrangian Spray Atomization (ELSA) approach is critical. This study proposes an equation for the primary breakup particle diameter D of a diesel fuel spray and adopts it as a key transition criterion for coupling. A three-dimensional diesel spray is modeled by the large-eddy simulation (LES) approach. This improved ELSA simulation was conducted using various transition criteria for particle diameter Dcr. The results show that fuel spray experiences two stages: stage I, when a liquid column appears without a dispersed phase, and stage II, when primary breakup occurs with many discrete particles. Although Dcr has little influence on the macro-spray characteristics, such as top penetration distance S and spray cone angle θ, it has significant effects on discrete particles, such as their number, average diameter, distribution and location, and spray cone area. Dcr should be determined on the basis of actual operating conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call