Abstract

The effects of dielectric constant and gate insulator thickness on the performance of single wall carbon nanotube field effect transistors (CNTFETs) have been analyzed using a mathematical model based on FETToy simulator. Both the parameters are found to have significant effect on the device performance, particularly the on-current; while the on-current (ION) increases on scaling down the gate oxide thickness, the level of leakage current (IOFF) is not considerably affected. This is an advantage of CNTFET over conventional MOSFETs where the thickness of thin oxide layer causes drastic increase in gate leakage current. Our analysis results show that thinner gate oxide and larger CNT improve the performance of CNTFETs. Therefore, the performance of our simulated CNTFETs using this model has clear lead over those of conventional MOSFETs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call