Abstract
This study investigated the effect of papain on the demulsification of peanut oil body emulsion extracted using an aqueous enzymatic method and the associated mechanism. The highest free oil yield using papain (92.39%) was obtained under the following conditions: an enzymatic hydrolysis temperature of 55°C, sample-to-water ratio of 1:3, enzyme concentration of 1400 U/g, and an enzymatic hydrolysis time of 3 h. Papain degraded the peanut oil body protein to small-molecular-weight peptides (≤ 14.4 kDa). Compared to the emulsion before enzymatic hydrolysis, the amino acid content in the aqueous phase was higher after enzymatic hydrolysis, the viscosity of the oil body emulsion was lower, and the particle diameter of the emulsion was significantly larger. The following demulsification mechanism was derived. Papain degrades the protein on the peanut oil body and dissolves it in water. The outer side of the oil body loses the protection of electrostatic repulsion and steric hindrance provided by the membrane protein. This causes the viscosity of the emulsion system and the molecular steric hindrance to decrease. As a result, the oil droplets gather and eventually demulsify. The results of this study provide the theoretical basis for the instability in oil body emulsions and are expected to promote the application of enzymatic demulsification in industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.