Abstract

Photoplethysmographic pulse wave amplitude (PPGA) and heart rate (HR) can be used to measure cold, nociception-induced autonomic responses, or both. The aim of our study was to correlate the intensity of experimental pain to changes in physiological variables reflecting the autonomic nervous system response to pain. PPGA, HR, and subjective measurements of pain intensity were measured in 29 healthy male volunteers during two heat stimuli (43°C and 48°C) and the cold pressor test (CPT). Surgical pleth index (SPI), autonomic nervous system state (ANSS), and ANSS index (ANSSi) were calculated using PPGA and HR. Pain intensity scores increased on the average by 1.6, 3.5, and 8.1 for the 43°C, 48°C, and CPT stimuli, respectively. The pain intensity scores for all three stimuli groups were significantly different from each other (P<0.001). All three stimuli changed HR, PPGA, SPI, ANSS, and ANSSi values significantly from their respective baseline values (P<0.001 for all). Heat stimuli-induced pain intensity did not correlate with the magnitude of the respective changes in HR, PPGA, SPI, ANSS, and ANSSi. CPT-induced pain intensity correlated with the magnitude of the respective changes in HR, PPGA, SPI, ANSS, and ANSSi. PPGA, ANSSi, ANSS, and SPI differentiated between heat and cold stimuli-induced pain. All three thermal stimuli produced a significant change in photoplethysmograph-derived parameters. All photoplethysmograph-derived parameters appear to be suitable to study autonomic nervous system activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.