Abstract

The effect of oxygen vacancies in the anodic oxide film on passive titanium on the kinetics of the oxygen electrode reaction has been studied by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Oxide films of different donor density were prepared galvanostatically at various current densities until a potential of 20.0 VSHE was achieved. The semiconductive properties of the oxide films were characterized using EIS and Mott-Schottky analysis, and the thickness was measured using ellipsometry. The film thickness was found to be almost constant at ∼44.7 ± 2.0 nm, but Mott-Schottky analysis of the measured high frequency interracial capacitance showed that the donor (oxygen vacancy) density in the n-type passive film decreased sharply with increasing oxide film formation rate (current density). Passive titanium surfaces covering a wide range of donor density were used as substrates for ascertaining relationships between the rates of oxygen reduction/evolution and the donor density. These studies show that the rates of both reactions are higher for passive films having higher donor densities. Possible explanations include enhancement of the conductivity of the film due to the vacancies facilitating charge transfer and the surface oxygen vacancies acting as catalytic sites for the reactions. The possible involvement of surface oxygen vacancies in the oxygen electrode reaction was explored by determining the kinetic order of the OER with respect to the donor concentration. The kinetic orders were found to be greater than zero, indicating that oxygen vacancies are involved as electrocatalytic reaction centers in both the oxygen evolution and reduction reactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call