Abstract

We investigated the influence of oxygen deficiency on the Fermi level (EF) of ZnO thin film prepared by pulsed laser deposition (PLD). For this purpose, we adopted in situ x-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy. The oxygen deficiency was effectively controlled by varying the oxygen partial pressure [P(O2)] during the PLD. The EF shifted by +0.6 eV as the P(O2) decreased from 10 to 3.3 Pa. This shift indicates a significant change in the energy balance in the oxygen-deficient ZnO films. This fact suggests that the very large change in the resistivity of ZnO thin films resulting from the oxygen deficiency could be attributed to the EF shift rather than grain boundary formation in the ZnO film.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.