Abstract

Fretting fatigue test of SUS304 austenitic stainless steel was performed in air, in hydrogen gas, and in oxygen–hydrogen mixture. The fretting fatigue strength is more significantly reduced in hydrogen as compared to air. An increase in the fretting fatigue strength was found in the mixture. The mechanisms were investigated focusing on crack initiation. As the result, the crack initiation limit was significantly lower in hydrogen than in air, and increased in the mixture. The tangential force coefficient in the mixture is similar to that in air. The morphology of the fretting damage in the mixture was similar to that in air. These results indicated that the adhesion between contacting surfaces was prevented by addition of oxygen.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call