Abstract
While the pathophysiologic mechanisms of bipolar illness are unknown, a dysregulation of electrolytes, particularly intracellular sodium (Na) and calcium (Ca), are thought to contribute to the illness. Ouabain, a potent Na pump inhibitor, administered intracerebroventricularly (ICV), has been used previously to model mania. The current study evaluates the effect of ICV ouabain on Na pump isoform expression in rat brain. Animals received 5 µl ICV of either 10 − 3 M ouabain or artificial cerebrospinal fluid (aCSF). They were then sacrificed 7 days after the ICV injection and specific brain areas were dissected and frozen until the assay (frontal cortex, hippocampus, and basal ganglia). The three isoforms of the alpha subunit of the Na pump that are expressed in the brain were quantified with immunoblot analysis with actin serving as internal control. The behavioral hyperactivity seen in rats receiving ICV ouabain is associated with an increase of expression of the glial-specific alpha2 isoform in the basal ganglia, and the neuron-specific alpha3 isoforms in the frontal cortex. These findings, in association with human post mortem studies finding that alpha2 is underexpressed in the temporal cortex of bipolar subjects, suggest that Na pump isoform expression may be of interest in the pathophysiology of mania.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have