Abstract

Plants growing under natural conditions are constantly exposed to various stress factors, which can restrain their productivity and limit yields. This paper deals with the effect of long- and short-term osmotic stress followed by recovery on the formation of polysomes and their stability during germination of pea (Pisum sativum L.) seeds. By isolating polysomes, it is possible to obtain an index which evidences the ability of tissues to synthesize proteins. Changes in the distribution of polysomes often precede measurable changes in amounts of proteins. Under osmotic stress, the dominant population of polysomes was the population of free polysomes (FP). The share of membrane-bound polysomes (MBP) and cytoskeleton-bound polysomes (CBP) and cytoskeleton-membrane-bound polysomes (CMBP) in the total fraction of ribosomes increased under intensive (−1.0 and −1.5 MPa) osmotic stress. These results can suggest that the bound forms of polysomes play an important role in the synthesis of stress proteins. In addition, the stability of polysomes isolated from pea early seedlings growing under unstressed control and osmotic stress conditions was tested. It turned out that polysomes formed under osmotic stress conditions (especially the CMBP) were more resistant to the activity of exogenous ribonucleases than the polysomes in the control samples. Under stress conditions it is highly likely that ribosomes become more densely packed on mRNA thus making it more resistant to ribonuclease. This is just one of the many mechanisms regulating stability of mRNA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.