Abstract

Rubber nanocomposites based on styrene–butadiene rubber (SBR) and organophilic layered silicate were prepared. Clay structures based on dodecyl benzene sulfonic acid (DBSA), nonyl phenol ethoxylate (NPE), and DBSA/NPE (50/50%) were prepared and characterized. The results indicate the intercalation of the used surfactants within the clay layers. Varying amount of organoclay, 2, 4, 6, 8, and 10 (phr), was added to the SBR matrix. X-ray diffraction revealed exfoliated structure for the modified clay–SBR composites. No new component in the rubber was found by fourier transform infrared measurements (FTIR). Scanning electron microscopy showed a uniform distribution of the modified clay with mixed DBSA/NPE (6 phr) in the matrix. The rheometric characteristics and physicomechanical properties of the SBR compounds were analyzed. The effect of DBSA/NPE clay loading on aging resistance of SBR nanocomposites at 90 ± 1°C for 4 and 7 days was also investigated. Rubber nanocomposites displayed an increase in the minimum and maximum torques, acceleration of the vulcanization process, and improved mechanical properties, with organoclay content up to 6 phr. This effect was more noticeable in the presence of the treated clay with DBSA/NPE. Also incorporation of DBSA/NPE-clay (6 phr) resulted in significant improvement of the degradation profile of the nanocomposites at 90 ± 1°C for 4 days. POLYM. COMPOS., 36:1293–1302, 2015. © 2014 Society of Plastics Engineers

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call