Abstract
The choice of gate dielectric materials is fundamental for organic field effect transistors (OFET), integrated circuits, and several electronic applications. The operation of the OFET depends on two essential parameters: the insulation between the semiconductor layer and the gate electrode and the capacitance of the insulator. In this work, the electrical behavior of a pentacene-based OFET with a top contact / bottom gate was studied. Organic polyvinyl alcohol (PVA) and inorganic hafnium oxide (HfO2) were chosen as gate dielectric materials to lower the operation voltage to achieve the next generation of electronic applications. In this study, the performance of the OFET was studied using monolayer and bilayer gate insulators. To model and analyze a device's electrical properties, MATLAB was used. Two main parameters were studied: switching ratio (Ion/Ioff) and subthreshold swing (SS), as well as the effect of dielectric capacitance on the gate dielectric materials. The PVA/HfO2 bilayer gate dielectric gave the best results in Ion/Ioff ratio, SS and transconductance of 9.05´10-7, -1.52, and -4.99 x10-5A/V respectively, which is because the dielectric capacitance has increased.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.