Abstract

The aim of this study was to determine the effect of glucose supplementation on leucine turnover during and after exercise and whether variation in the previous dietary protein content modulated this effect. Postabsorptive subjects received a primed constant [1-13C, 15N]leucine infusion for 6 h, after previous consumption of a high (1.8 g kg-1 day-1, HP, n = 16) or low (0.7 g kg-1 day-1, LP, n = 16) protein diet for 7 days. The subjects were studied at rest; during 2 h of exercise, during which half of the subjects from each dietary protocol received 0.75 g kg-1 h-1 glucose (HP + G, LP + G) and the other half received water (HP + W, LP + W); then again for 2 h of rest. Glucose supplementation suppressed leucine oxidation (P < 0.01) by 20% in subjects consuming the high protein diet (58.2 +/- 2.8 micromol kg-1 h-1, HP + G; 72.4 +/- 3.9 micromol kg-1 h-1, HP + W) but not the low protein diet (51.1 +/- 5.9 micromol kg-1 h-1, LP + G; 51.7 +/- 5.5 micromol kg-1 h-1, LP + W), with no difference in skeletal muscle branched-chain 2-oxo acid dehydrogenase (BCOADH) activity between groups. Glucose supplementation did not alter the rate of whole-body protein synthesis or breakdown. The sparing effect of glucose on leucine oxidation appears only to occur if previous protein intake was high. It was not mediated by a suppression of BCOADH fractional activity but may be due to reduced substrate availability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.