Abstract

A detailed investigation of photocatalytic degradation of m-cresol purple (mCP) dye has been carried out in aqueous heterogeneous medium containing zinc oxide (ZnO) as the photocatalyst in a batch reactor. The effects of some parameters such as amount of photocatalyst, dye concentration, initial pH of solution, ethanol concentration and temperature were examined. The most efficient pH in removal of the dye with photocatalytic degradation and dark surface adsorption processes was observed to be 8. The adsorption constant calculated from the linear transform of the Langmuir isotherm model was similar to that obtained in photocatalytic degradation at pH = 8; hence, the Langmuir–Hinshelwood model was found to be accurate for photocatalytic degradation at this pH. Dark surface adsorption and degradation efficiency were increased by enhancement in the temperature at the optimum pH of 8 and the apparent activation energy (Ea) for the photocatalytic degradation of mCP was determined as 14.09 kJ/mol at this pH. The electrical energy consumption per order of magnitude (EEO) for photocatalytic degradation of mCP was also determined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call