Abstract

The objective of this study was to determine the additional contribution of NQO1 and CYP4F2 genotypes to warfarin dose requirements across two racial groups after accounting for known clinical and genetic predictors. The following were assessed in a cohort of 260 African-Americans and 53 Hispanic-Americans: clinical data; NQO1 p.P187S (*1/*2); CYP2C9*2, *3, *5, *6, *8 and *11; CYP4F2 p.V433M; and VKORC1 c.-1639G>A genotypes. Both the CYP4F2 433M (0.23 vs 0.06; p < 0.05) and NQO1*2 (0.27 vs 0.18; p < 0.05) allele frequencies were higher in Hispanic-Americans compared with African-Americans. Multiple regression analysis in the Hispanic-American cohort revealed that each CYP4F2 433M allele was associated with a 22% increase in warfarin maintenance dose (p = 0.019). Possession of the NQO1*2 allele was associated with a 34% increase in warfarin maintenance dose (p = 0.004), while adjusting for associated genetic (CYP2C9, CYP4F2 and VKORC1) and clinical factors. In this population, the inclusion of CYP4F2 and NQO1*2 genotypes improved the dose variability explained by the model from 0.58 to 0.68 (p = 0.001), a 17% relative improvement. By contrast, there was no association between CYP4F2 or NQO1*2 genotype and therapeutic warfarin dose in African-Americans after adjusting for known genetic and clinical predictors. In our cohort of inner-city Hispanic-Americans, the CYP4F2 and NQO1*2 genotypes significantly contributed to warfarin dose requirements. If our findings are confirmed, they would suggest that inclusion of the CYP4F2 and NQO1*2 genotypes in warfarin dose prediction algorithms may improve the predictive ability of such algorithms in Hispanic-Americans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call