Abstract

IntroductionThe aim of this study was to test the hypothesis that a combination of D-amino acids (DAAs) and trans-cinnamaldehyde (TC) demonstrates superior antibiofilm activity to calcium hydroxide (CH) and untreated controls. MethodsIn this 3-part in vitro study, the concentration of DAAs (D-methionine, D-leucine, D-tyrosine, and D-tryptophan) that would significantly decrease Enterococcus faecalis and Actinomyces naeslundii biofilm biomass was first determined. Then, the effect of TC + selected DAAs on polymicrobial biofilms was characterized by quantifying the biomass and biofilm viability. Finally, the antibiofilm effects of TC + DAA was compared with CH and untreated controls by (i) determining bacterial viability and (ii) quantifying biofilm matrix composition using selective fluorescence-binding analysis. Statistical analysis was performed using one-way ANOVA and appropriate multiple comparisons test, with P < .05 considered as statistically significant. ResultsTC (0.06%) + D-tyrosine (1 mM) + D-tryptophan (25 mM) significantly reduced the biomass and biofilm viability compared to the control (P < .05). While no significant difference was observed between TC + DAA and CH in the cultivable bacterial counts (P > .05), confocal microscopy demonstrated a significantly greater percentage of dead bacteria in TC + DAA-treated biofilms compared to CH and the control (P < .05). TC + DAA significantly decreased the biovolume and all the examined components of the biofilm matrix quantity compared to the control, while CH significantly reduced only the exopolysaccharide quantity (P < .05). ConclusionThe combination of TC + D-tyrosine + D-tryptophan demonstrated superior antibiofilm activity (biofilm bacterial killing and reduction of matrix quantity) to CH and has potential to be developed as an intracanal medicament.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.