Abstract

We report the effect of nonionic surfactants (Pluronics F127 and F88) on the melting transition of micron-sized colloids confined in two dimensions, mediated by complementary single-stranded DNA as a function of the surfactant concentration. Micron-sized silica particles were functionalized with single-stranded DNA using cyanuric chloride chemistry. The existence of covalently linked DNA on particles was confirmed by fluorescence spectroscopy. The nonionic surfactant not only plays a significant role in stabilization of particles, with minimization of nonspecific binding, but also impacts the melting temperature, which increases as a function of the nonionic surfactant concentration. These results suggest that the melting transition for DNA-mediated assembly is sensitive to commonly used additives in laboratory buffers, and that these common solution components may be exploited as a facile and independent handle for tuning the melting temperature and, thus, the assembly and possibly crystallization within these systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.