Abstract

Anthropogenic nitrogen (N) addition has dramatically increased and significantly affected global nitrogen cycling. The natural abundance of stable N isotope ratios (δ15N) has been used as an indicator of the N status of an ecosystem. However, how plant and soil δ15N signatures would respond to N addition is still unclear. Herein, we synthesized the data of 951 observations from 48 individual studies associated with responses of plant and soil δ15N values to N addition and conducted a meta-analysis to explore a general pattern of N addition effects on δ15N values of plant and soil. Our results showed that δ15N values of plant, soil total N, and soil NO3 − were significantly increased by N addition, while δ15N value of soil N2O was significantly decreased and δ15N value of soil NH4 + was not significantly changed. The δ15N value of soil total N of different ecosystems showed similar responses to N addition, whereas δ15N values of different plant types showed different responses. Increasing treatment duration significantly increased the effects of inorganic N addition on δ15N values of shrubs and soil NH4 + but did not affect the responses of δ15N values of soil total N and NO3 −. With increasing inorganic N addition rate, only δ15N value of plant was significantly increased, but no significant relationship was found between the effect of N addition on other components and N addition rate because of the input of isotopically depleted sources. Our study revealed a comprehensive picture of the effects of N addition on δ15N signatures in terrestrial ecosystems and could help us understand how plant and soil δ15N signatures change with N addition and how these signatures can be used as an indicator of ecosystem N status under increasing N deposition or fertilization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call