Abstract

The natural abundance of 15N (δ15N) in plants and soils is an ideal tool for assessing ecosystem N dynamics. However, many of the mechanisms driving the variability of foliar and soil δ15N values within and across ecosystems are still unclear. In this study, we analyzed the patterns of N concentrations and δ15N values in leaves, bulk soils and soil mineral N as well as soil N turnover rates across four temperate and boreal forest ecosystems along a mountain transect. The results showed that plant species and soil properties directly controlled soil δ15N patterns and climate factors (air temperature and precipitation) indirectly affected foliar δ15N patterns. Foliar N concentrations varied consistently with the concentrations of soil available N and soil NO3−-N, whereas foliar δ15N was most closely associated with the δ15N of soil NH4+, the most abundant form of N in soil solution. 15N enrichment in surface mineral soil in high elevation forests was mainly attributed to 15N-enriched organic N accumulation. Furthermore, the foliar enrichment factor (ep/s = δ15Nfoliage−δ15Nsoil) was significantly correlated with N transformation and loss rates, and was negatively correlated with the ratio of NH4+ to total inorganic N. These results suggest that foliar δ15N value and foliar N concentration together accurately reflect the N availability of forest ecosystems. Foliar ep/s can act as an integrated proxy to reflect the status of N cycling within or across forest ecosystems. Soil nitrification and species’ NH4+ to NO3− uptake ratios are key processes controlling foliar δ15N patterns in N-limited forest ecosystems. Our findings improve the mechanistic understanding of the commonly observed variability in foliar and soil δ15N within and across forest ecosystems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.