Abstract

The effect of nitride passivation on the visible photoluminescence from nanocrystal Si (nc-Si) is investigated. Silicon-rich silicon nitride (SRSN) and silicon-rich silicon oxide (SRSO), which consist of nc-Si embedded in silicon nitride and silicon oxide, respectively, were prepared by reactive ultrahigh vacuum ion beam sputter deposition followed by a high temperature anneal. Both SRSN and SRSO display photoluminescence peaks after high temperature annealing, coincident with the formation of Si nanocrystals, and similar changes in the peak luminescence position with the excess Si content. However, the luminescence peak positions from SRSN are blueshifted by about 0.6eV over that of comparable SRSO such that its luminescence peaks in the visible range. The results demonstrate that control of the surface passivation is critical in controlling the nc-Si luminescence, and indicate the possibility of using nitride-passivated nc-Si for visible luminescence applications including white luminescence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call