Abstract

In the temperature range of 1000 °C–1150 °C and the holding time range of 30–150 min, the effect of niobium (Nb) on the behavior of grain growth and the evolution pattern of the mechanical properties of a martensitic stainless steel was studied. This study found that the addition of Nb allowed a large amount of undissolved NbC phase to be present in the steel, that the dragging effect of the solute atoms such as solute Nb and Mo reduced the migration rate of the grain boundary , and the pinning effect of NbC hindered the growth of grains, and that the growth rate of grains in 0.11Nb steel was slow in the temperature range of 1000 °C–1080 °C and increased significantly at the temperature range of 1080 °C–1150 °C. Next, the kinetic equations of the grain growth of 0.002Nb steel and 0.11Nb steel were constructed. The second phase strengthening of NbC and the fine grain strengthening jointly increased the yield strength of the steel but reduced the plasticity and ultimate tensile strength (UTS) of the steel. The addition of Nb had a minor effect on the content of retained austenite in the steel, but its refining effect on the hierarchical martensite microstructure increased the number of nucleation sites of retained austenite, reduced their sizes, made their distribution more dispersed, and more effectively hindered crack propagation, thus improving the toughness of the steel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call