Abstract
The effect of nicotine on synaptic transmission in the frog and cat spinal cord was studied. Both a regular wick electrode and a microelectrode of the Ling-Gerard type were used. The reflex activity of the bullfrog spinal cord is facilitated by 0.01% nicotine solution, but is depressed and abolished by 0.1% solution. In the cat, intravenous administration of 150 mg/kg fails to block reflex activity, but topical application does block. The intracellular potential, of both frog and cat motoneurones, shows no change in the synaptic potential after application of the drug, but the spike appears after a shorter synaptic delay and one or more additional spikes appear. When the synaptic delay becomes sufficiently short, however, all spikes suddenly disappear, leaving the still unchanged synaptic potential. Occasionally the synaptic delay is again increased just before the spike potentials disappear. The excitability of a frog motoneurone was measured, by a recording microelectrode, before and after nicotine application. The drug first increased and then decreases excitability. Epinephrine can restore a reflex discharge depressed or abolished by nicotine. It is concluded that high concentrations of nicotine block synaptic transmission in the central nervous system, acting on the cell body but not on the synaptic potential.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have