Abstract
Thin films of pristine titanium dioxide (TiO2) and doped with different concentrations (0–8) at.% of nickel (Ni) were synthesized onto transparent glass substrates using the spray pyrolysis deposition technique. Field emission scanning electron microscopy revealed the porous and agglomerated surface morphology of the films. X-ray diffractometer demonstrated the anatase crystal structure with a nominal increment of (101) peak. The shifting of peak position revealed the expansion of the unit cell volume from 134.64 to 137.54 (Å)3 whereas crystallite size increased from 34 to 63 nm. Using the Fizeau fringes technique, the thickness of the films was determined between 165 and 190 nm. UV–Vis measurements were employed to examine the optical characteristics of the films. The red shift was observed for 2 at.% Ni content (3.38 eV) while the blue shift was observed for (4–8) at.% Ni content. The wavelength-dependent refractive index and dielectric constant showed anomalous dispersion in the absorption band, representing the transparency of the films. The 4-point probe measurement showed a decreasing trend of resistivity with increasing temperature, whereas the resistivity increased with Ni content. Activation energy indicated a higher amount of adsorbed oxygen in the films due to the high amount of Ni content.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.