Abstract
Microstructure of the matrix directly influences the performance and the application of metal matrix composites. By using vacuum casting-infiltration method to manufacture casting tungsten carbide particle reinforced composite, the addition of Ni can alter the microstructure of the matrix of composite. High carbon chromium steel was chosen as the substrate. The casting process was achieved at 1580 °C with vacuum degree of 0.072–0.078 MPa. Padding of the molten steel in each part of the preform was different, and the solidification of each part of the composite was different, too. Microstructure of the matrix was various in different parts of the composite. The Ni addition had enlarged the austenite zone in matrix, which would improve the corrosion resistance of the composite. The phase identification of the composite was performed by X-ray diffraction technique. The result showed that Fe3W3C was the primary precipitated carbide and its composition had a direct link with the decomposition of the casting tungsten carbide particles. The hardness of the matrix mainly depended on the reinforced carbide, i.e. Fe3W3C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.