Abstract
We examine the influence of nonadiabatic effects on the modes of an isothermal stratified magnetic atmosphere. The present investigation is a continuation of earlier work by Hasan and Christensen-Dalsgaard (1992) and Banerjee, Hasan, and Christensen-Dalsgaard (1995, 1996), where the interaction of various elementary modes in a stratified magnetized atmosphere was studied in the purely adiabatic limit. The inclusion of radiative dissipation based on Newton's law of cooling demonstrates the importance of this effect in the study of magnetoatmospheric waves. We analyze the physical nature of magnetoacoustic gravity (or MAG) oscillations in the presence of Newtonian cooling and find that the eigenfrequency curves in the diagnostic diagram, as in the previous analysis, undergo avoided crossings. However, the qualitative nature of the mode interaction is strongly influenced by radiative dissipation, which leads to strong mode damping in the avoided-crossing regions. We demonstrate this effect for the interaction between the Lamb mode and a magnetic mode. Our results could be important in the analysis of waves in flux tubes on the Sun.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have