Abstract

A composite was produced from initial powder mixture of B4C (70 wt.%) and Al (30 wt. %) with WC-Co additives introduced during ball-milling and acting as catalysts by self-propagating high-temperature synthesis and followed by heat treatment of raw samples under gaseous nitrogen flow at 650, 800, 1000, 1150 and 1450 °C, respectively. Formation of different new superhard phases was detected via XRD investigation and analysis of microstructures. Micromechanical properties were tested by nanoindentation. The tribological behavior in dry sliding conditions of the composite was investigated using the ball-on-disk technique against alumina balls. The friction coefficient of the composite increased and wear rate decreased with formation of c-BC2N, c-BN, B13C2, W2B5, Al3BC, AlN, etc. contents during heat treatment at increased temperatures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.