Abstract

The purpose of this study was to elucidate the effect of deafferentation on spinal motoneurons. We studied the effects of spinal cord transection and/or dorsal rhizotomy upon the contractile properties of EDL and soleus muscle, as well as on the number of motoneurons corresponding to these muscles. Neonatal Wistar rats were randomly divided into four groups in which spinal midthoracic section (T8–T10), unilateral dorsal lumbar rhizotomy (L3–S2) or both procedures were performed on the second postnatal day (PND2). Another group served as unoperated control. At 2 months of age, the animals were evaluated for the contractile properties of a fast (EDL) and a slow (soleus) muscle. Isometric tension recordings were elicited by way of sciatic nerve branches stimulation. In addition, the incremental method was applied for the determination of the number of motor units supplying the two muscles, which was also verified by using the horseradish peroxidase (HRP) method of reverse labeling of motoneurons. Muscle alterations were confirmed by the usual biochemical staining. Our results, in agreement with the data from other researchers, show that significant muscle atrophy takes place after all experimental procedures. Additionally, spinal cord section alters the development of the dynamic properties of soleus muscle, which attains a fast profile. Following transection, the number of motor units remained unaltered, while rhizotomy affected only the soleus by reducing its motor units. The combined procedure affected both muscles, indicating that adequate synaptic input is essential for motoneuron survival.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call