Abstract

ABSTRACT This paper presents an experimental investigation on fracture behavior of epoxy resin-carbon fibers composites interleaved with both neat polyacrylonitrile (PAN) nanofibers and Al2O3-PAN nanofibers. In particular, the paper focuses on the effect of adding Al2O3 nanopartiles in PAN nanofibers, which were incorporated in unidirectional (UD) laminates. The effectiveness of adding a thin film made of Al2O3-PAN on the fracture behavior of the carbon fiber reinforced polymer (CFRP) has been addressed by comparing the energy release rates, obtained by testing double cantilever beam (DCB) samples under mode I loading condition. A general improvement in interlaminar fracture energy of the CFRP is observed when the both neat PAN nanofibers and Al2O3-PAN nanofibers are interleaved. However, higher interlaminar strength has been observed for the samples with a thin film of Al2O3-PAN nanofibers, suggesting a better stress distribution and stress transformation from resin-rich area to reinforcement phase of hybrid composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.