Abstract

The nanofluid flow in serpentine microtube was numerically investigated in this study. The study has been carried out in three-dimensional laminar flow (750≤Re≤2000) condition. Al2O3 – water nanofluid with different nanoparticle volume fractions (1.0%, 2.0%, 3.0%) have been used as the working fluid in the numerical analyzes. In addition, studies were carried out for blade, platelet and cylindrical nanoparticle shapes. The average Nusselt numbers and the average Darcy friction factors have been used to estimate the flow and heat transfer performance of nanofluid flow in serpentine microtubes. Velocity and temperature distributions inside the microtube were also examined for different cases. Numerical results of the study have been presented as the variation of average Nusselt number and average Darcy friction factor with Reynolds number, nanoparticle shape and nanoparticle volume fraction. As a result, the highest convective heat transfer performance has been obtained for platelet nanoparticle shape of the Al2O3-water nanofluid with 3.0% nanoparticle volume fraction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call