Abstract

The fabrication of ordered nanoarray electrode (NAE) using UV imprinting and their application as electrochemical (EC) immunosensor is described in this study. Especially, the influence of the array density factors on the performance of NAE was characterized electrochemically and compared with flat-electrode. Low-density (hole: 200 nm, hole space = 600 nm), medium-density (hole: 200 nm, hole space = 400 nm), and high-density NAE (hole: 200 nm, hole space = 200 nm) which have the same active area were fabricated and their redox cycling was compared with empirical results. We observed that the high-density is the optimum NAE exhibiting the lowest charge transfer resistance and the highest redox cycling performance among all NAEs. Finally, to observe the effect of their EC performance as biosensor, an EC immunoassay was performed using Interleukine-6 (IL-6), and high-density NAE has lowest a low limit of detection (LOD) of 0.45 pg/mL compared with other NAEs (medium-density: 3.91 pg/mL, low-density: 5.87 pg/mL).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.