Abstract
In horseradish peroxidase (HRP)-based electrochemical immunosensing, an appropriate HRP substrate needs to be chosen to obtain a high electrochemical signal-to-background ratio. This is limited by the unwanted electrochemical reduction of H2O2, oxidation of the substrate, and the slow electrochemical reduction of the product. Herein, we report acetaminophen (AMP) as a new HRP substrate that allows for highly sensitive immunosensing. Electrochemical behavior and immunosensing performance using AMP are compared with those using the most popular HRP substrate, hydroquinone (HQ). To maintain a high electrocatalytic activity even at an electrode modified with an immunosensing layer, an indium tin oxide electrode partially modified with reduced graphene oxide is employed. AMP allows for a higher signal-to-background ratio than HQ, because the formal potential of AMP is 0.28 V higher than that of HQ and the redox reaction of AMP is as reversible as that of HQ, resulting in a lower detection limit in a sandwich-type immunoassay using AMP for thyroid-stimulating hormone detection. The calculated detection limit is ~0.2 pg/mL. The use of AMP as an HRP substrate is especially promising for highly sensitive electrochemical immunoassays.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.