Abstract

The regulation of cellular metabolism is a topic of interest for both fundamental and applied science, as the findings can be used in various biotechnological industries. One of the universal regulatory mechanisms that affects most cellular processes is the acetylation of lysine residues in central metabolic enzymes, such as glyceraldehyde-3-phosphate dehydrogenase. In this work, we investigated the effect of acetylation and deacetylation on the activity of both wild type and mutant E. coli glyceraldehyde-3-phosphate dehydrogenase. We found that in vitro acetylation of wild-type GAPDH by PatZ acetyltransferase increased its enzymatic activity by twofold, while subsequent deacetylation restored the activity to initial level. For mutant forms of glyceraldehyde-3-phosphate dehydrogenase, we demonstrated that the introduction of additional acetylation sites due to mutations altered the impact of acetylation/deacetylation processes on glyceraldehyde-3-phosphate dehydrogenase activity. Our data suggest a re-evaluation of the role of acetylation in regulating glyceraldehyde-3-phosphate dehydrogenase activity and its involvement in E. coli metabolism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call