Abstract
We have investigated an effect of N incorporation on InGaAsN on Ge (001), which is proposed to be a part of the InGaP(N)/InGaAs/InGaAsN/Ge four-junction solar cell, and on its growth behavior. Results obtained from high resolution X-ray diffraction and Raman scattering demonstrated that high quality In0.11Ga0.89As1-yNy films with N (y) contents up to 5% were successfully grown on n-type doped Ge (001) substrate by metalorganic vapor phase epitaxy using low-temperature (500°C) GaAs buffer layer. As expectation, the In0.11Ga0.89As0.96N0.04 film is examined to be under lattice-matching condition. Anti-phase domains were observed for the film without N incorporation, which exhibits submicron-size domains oriented along the [110] direction on the grown surface. With increasing N content, the domains become less orientation, and present in a larger domain size. Based on results of transmission electron microscopy, a high density of anti-phase domains was clearly observed at the interface of low-temperature GaAs buffer layer and Ge substrate. On the other hand, it is found to drastically reduce within the N-contained InGaAsN region. Furthermore, the lattice-matched In0.11Ga0.89As0.96N0.04 film is well developed to reduce the density of anti-phase domains.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have