Abstract

PurposeThe purpose of this paper is to report the effect of multiple reflow cycles on ball impact test (BIT) responses and fractographies obtained at an impact velocity of 500 mm/s on Sn‐4Ag‐0.5Cu solder joints.Design/methodology/approachSolder balls were mounted on copper substrate pads with immersion tin surface finish, supplied by two vendors. For these particular test vehicles and test conditions, fracture near the interface between the interfacial Cu6Sn5 intermetallic compound (IMC) and copper pad was identified as the only failure mode induced by BIT.FindingsMeasurement results indicate that BIT characteristics in general degrade as the number of reflow cycles increases. Furthermore, scanning electron microscopy observations show that the thickness and grain size of interfacial Cu6Sn5 increase with increasing number of reflow cycles. This correlation confirms the familiar notion that a thicker Cu6Sn5 degrades the interfacial strength.Originality/valueThere are few reports that can attribute failure directly to the IMC(s) at the interface. This paper, however, successfully correlates the weakening solder joints with the thickening and shape changes of IMC(s) in a direct way.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call