Abstract

AbstractThe thermal stability of bentonite is vitally important for its application in the casting field and the layer charge of montmorillonite (Qm) is one of its central crystal-chemical parameters. As the main component of bentonite, the influence of Qm on montmorillonite properties and behavior needs to be considered if bentonite is to be used in high-temperature environments. The objective of the current study was to investigate the relationship between Qm and the thermal stability of Chinese bentonite samples collected from Wuhu, Anhui Province (marked as WH); Xinyang, Henan Province (marked as XY); and Santai, Sichuan Province (marked as ST) below. The values of Qm were obtained using the O (11) method, and the structural properties of the bentonite samples were characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), thermogravimetry-differential scanning calorimetry (TG-DSC), and field emission scanning electron microscopy (FESEM). The results showed that, in the samples investigated, Qm was inversely related to the thermal stability of bentonite. The Qm value (electrons per half unit cell, e/huc) was greatest for sample ST (0.725 e/huc), followed by sample XY (0.470 e/huc), and by sample WH (0.354 e/huc). The dehydroxylation temperature changed related to Qm; the sample with the largest Qm value was WH (701°C), followed by sample XY (684°C), and sample ST (630°C). After the samples were calcined at 600°C, sample WH had the best montmorillonite structural integrity with the greatest degree of reusability (78.21%); while the montmorillonite structures of samples XY and ST were destroyed, and their reusabilities were only 9.48 and 6.01%, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.