Abstract

In the family of inorganic nanomaterials, zirconia is a highly promising functional ceramic with a high refractive index, hardness, and dielectric constant, as well as excellent chemical inertness and thermal stability. These properties are enhanced in nano-zirconia ceramics, because nanopowders have a small particle size, good morphology, and uniform and dispersive distribution. In this study, a co-precipitation process was proposed to synthesise highly dispersed MgO–Y2O3 co-stabilized ZrO2 nanopowders. The effects of different calcination temperatures on the crystallisation degree and particle dispersion of zirconia nanopowders were characterised by X-ray diffraction (XRD), thermogravimetry-differential scanning calorimetry (TG-DSC), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), nitrogen adsorption using the Brunauer–Emmett–Teller (BET) theory, transmission electron microscopy (TEM), and field emission scanning electron microscopy (FESEM). The optimum synthesis conditions were obtained as follows: 6 h of high-energy planetary grinding and calcination at 800 °C in an electric furnace. Under these optimum conditions, the average particle size of the prepared powder was 28.7 nm. This process enriches the literature on the controllable preparation of Mg–Y/ZrO2 nanopowders obtained by the co-precipitation method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call