Abstract

In this work, a detailed parametric study assessing the impact of low-conductivity coatings on the radio-frequency accelerating cavity quality factor and resonance frequency shift is presented. In particular, this study is aimed at proving the feasibility of molybdenum oxides deposited on copper to reduce the dark current in high-gradient applications due to its intrinsically high work function. In order to compute the effective surface impedance of the resulting layered structure, a transmission line-based approach is adopted. The present analysis demonstrates the potential effectiveness of molybdenum thin-films, which only slightly affects the accelerating cavity quality factor, with very low sensitivity to thickness and resistivity inhomogeneities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call