Abstract

The technique of post-sealing the phosphated hot-dip galvanized (HDG) steel with molybdate solution was addressed. The composition and corrosion resistance of the improved phosphate coatings were investigated by SEM, EDS, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements, and neutral salt spray (NSS) test. The results showed that molybdate films were formed in the pores of phosphate coatings, and the compact and complete composite coatings composed of phosphate coatings and molybdate films were formed on the zinc surface, resulting in that both the anodic and cathodic processes of zinc corrosion were inhibited remarkably; the corrosion protection efficiency values were increased; and the electrochemical impedance values were enhanced at least one order of magnitude. The low frequency impedance values for the composite coatings were increased at the initial stages of immersion in 5% sodium chloride solution, indicating the self-repairing activity of the composite coatings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.