Abstract

Amphiphilic polymer surfactants are composed of hydrophilic and hydrophobic polymers and are widely used in targeted drug delivery. The purpose of this study was the evaluation of the effect of molecular weight and molar ratio of dextran on physicochemical properties of dextran stearate polymeric micelles. Dextran stearate was synthesized by acylation of dextran with stearoyl chloride. Etoposide loaded polymeric micelles were prepared by dialysis method. The resulting micelles were evaluated for particle size, zeta potential, critical micelle concentration (CMC), drug loading capacity, and release efficiency. Cytotoxicity and cellular uptake of micelles were studied in CT-26 colorectal carcinoma cell line. Molecular weight and molar ratio of dextran-stearate were impressive on zeta potential, CMC, drug loading capacity, and release efficiency. Unlike polymer molecular weight, molar ratio of stearate had a significant effect on cytotoxicity and particle size of etoposide loaded micelles. Although molecular weight of dextran had no significant effect on cytotoxicity of micelles on CT-26 cells, it had drastic attributes for stability of polymeric micelles. Consequently, both variables of molecular weight of dextran and molar ratio of stearate should be taken into account to have a stable and effective micelle of dextran-stearate.

Highlights

  • Polymeric micelles are self-assembling nanocarriers which are composed of two block copolymers

  • Dextran stearate was synthesized by acylation of dextran with stearoyl chloride

  • The results show considering low critical micelle concentration (CMC) values obtained for the dextran stearate copolymers compared to the high values of surfactants they can form stable micelles in aqueous solutions

Read more

Summary

Introduction

Polymeric micelles are self-assembling nanocarriers which are composed of two block copolymers. There are increasing interests in their use as drug carriers due to their stability and ease of preparation. They can solubilize, stabilize, and target pharmaceutical active ingredients and diagnostic materials [1, 2]. One of the most interesting areas of application of polymeric micelles is drug delivery to cancerous tumors. Many of chemotropic agents have low solubility and stability in blood or even during their storage time before administration. Most of them have severe adverse effects because of their distribution in other compartments of body than its target organ [2, 3]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call